Preliminary communication

The diversity of behavior of tetracyanoethylene toward transition metalcarbon σ -bonded complexes

SOPHIA R. SU and ANDREW WOJCICKI

The McPherson and Evans Chemical Laboratories, The Ohio State University, Columbus, Ohio 43210 (U.S.A.)

(Received June 15th, 1971)

Transition metal alkyls of the type π -C₅H₅Fe(CO)₂R, π -C₅H₅Cr(NO)₂R, and π -C₅H₅Mo(CO)₂(L)R react with tetracyanoethylene (TCNE) to give the corresponding 1,2-

CN CN | | and/or 1,4-addition products, M-C-C-R (provisional formulation) and | | CN CN

CN | M-N=C=C---C-R, respectively¹. We now wish to report that the nature of products from | | CN CN

such reactions can change markedly upon suitable replacement of ancillary ligands or upon introduction of unsaturation into the hydrocarbon moiety R.

The reaction of TCNE in benzene with an equimolar amount of π -C₅H₅Fe(CO)[P(C₆H₅)₃]CH₃, also in benzene, at 5–10° produces an instantaneous color change from orange to dark green. Removal of the solvent after ca. 15 min and chromatography on alumina leads to the isolation (70–75%) of a dark green solid which, on the basis of the chemical analyses and its IR (no terminal ν (CO); ν (CN), 2195 (s, sharp), 2217 (sh); acyl ν (CO), 1651 (s), 1618 (sh) cm⁻¹; CH₂Cl₂ soln) and ¹ H NMR spectra (π -C₅H₅, τ 4.83 (doublet), J = 1.0 Hz; CH₃, τ 7.18 (singlet)) is designated as π -C₅H₅Fe[P(C₆H₅)₃](COCH₃)(C₆N₄) (I, R = CH₃). Similar, very rapid reactions occur with other π -C₅H₅Fe(CO)(L)R (L = P(C₆H₅)₃, R = C₂H₅ or n-C₃H₇; L = P(n-C₄H₉)₃, R = CH₃; L = P(OC₆H₅)₃, R = CH₃) compounds. However, π -C₅H₅Fe(CO)(L)CH₂C₆H₅ (L = P(C₆H₅)₃ or P(n-C₄H₉)₃) afford keteniminato complexes, π -C₅H₅Fe(CO)(L)[N=C=C(CN)C(CN)₂CH₂C₆H₅], instead.

J. Organometal. Chem., 31 (1971) C34-C36

The aforementioned "carbonyl insertion" reactions are noteworthy, since, apart from CO, which requires vigorous conditions², TCNE represents the only reagent capable of effecting an $M(CO)(R) \rightarrow M(COR)$ intramolecular conversion in substituted complexes of the type π -C₅H₅Fe(CO)(L)R. This remarkable reactivity may be best ascribed to strong electrophilic properties of the cyanoolefin TCNE³.

Thermal treatment of (I, $R = C_2 H_5$) at 65–70° for 1–2 h, followed by chromatography on alumina, affords (II) in 30% yield:

Whether this apparent transfer of C_2H_5 from CO onto a coordinated TCNE proceeds inter, or intramolecularly is yet to be determined.

The reaction of π -C₅H₅Fe(CO)₂CH₂C(R)=CR'₂ or π -C₅H₅Mo(CO)₃CH₂C(R)=CR'₂ (R = CH₃, R' = H; R = H, R' = CH₃) with TCNE in THF or CH₂Cl₂ at 25° for 5-30 min yields (50-95%) yellow solids which analyze as 1/1 adducts of the two reactants. Primarily on the basis of the ¹H NMR spectra of π -C₅H₅M(CO)_xCH₂C(R)=CR'₂ · TCNE having R = CH₃ and R' = H (M = Fe, x = 2: π -C₅H₅, τ 4.86; CH₃, τ 8.32; CH₂, AB quartet with τ 6.98 and 6.62, J = 14.5 Hz; M = Mo, x = 3: π -C₅H₅, τ 4.14; CH₃, τ 8.16; CH₂, AB quartet with τ 6.80 and 6.32, J = 15 Hz) we favor structures derived from 1,3-⁴ (III) rather than 1,2-addition (IV) of TCNE to C-C bonds^{*}. By contrast,

 π -C₅H₅Mo(CO)₂ [P(OC₆H₅)₃]CH₂CH=C(CH₃)₂ and TCNE react very slowly (~ 50 h) in

 $CH_2 Cl_2$ at 25° to give a direct (1,4) insertion product (V). It appears that the pronounced inhibition and a different course of this reaction are due to replacement of CO with a bulky phosphite ligand.

^{*}Note added in proof. We have now learned that cyclopentadienyliron dicarbonyl allyl-TCNE complexes have been prepared independently and formulated identically by Professor M. Rosenblum and Dr. W.P. Giering; M. Rosenblum, private communication.

The 2-alkynyls π -C₅H₅Fe(CO)₂CH₂C \equiv CR (R = CH₃ or CH₂Fe(CO)₂(π -C₅H₅)) also react with TCNE in THF, CH₂Cl₂ or CH₃CN at 25° to give 1/1 addition compounds. The IR spectrum of the product from the dimetallic

 π -C₅H₅Fe(CO)₂CH₂C=CCH₂Fe(CO)₂(π -C₅H₅) and TCNE exhibits four ν (CO) bands (2034 (vs), 2008 (s), 1979 (vs), and 1950 (s) cm⁻¹; CH₂Cl₂ soln); the corresponding ¹H NMR spectrum shows π -C₅H₅ resonances at τ 4.88 and 4.72 and two different CH₂ signals, both triplets (J = 1.2 Hz), at τ 7.40 and 6.50. From these data, and by analogy with the known behavior of the same iron complex toward SO₂⁵ and C₆H₅NSO ⁶, we propose structure (VI) for this adduct. A similar ring structure, consistent with the spectral data, is assigned to the analogous product from the monometallic (R = CH₃) alkynyl.

The aforementioned reactions serve to underscore a wide range of behaviors of TCNE toward transition metal organic compounds. Briefly, they are classified as 1,2-addition, 1,4-addition, π -complex formation with "CO insertion", and 1,3-addition with metal migration. In every case, the observed course of reaction may be rationalized in terms of an electrophilic interaction of TCNE with the appropriate electron-rich part of the organometallic molecule. This particular facet, as well as details of our experiments, will be described fully in a later publication.

ACKNOWLEDGMENT

We are grateful to the National Science Foundation for support.

REFERENCES

- 1 S.R. Su, J.A. Hanna and A. Wojcicki, J. Organometal. Chem., 21 (1970) P21.
- 2 P.M. Treichel, R.L. Shubkin, K.W. Barnett and D. Reichard, Inorg. Chem., 5 (1966) 1177.
- 3 W.H. Baddley, Inorg. Chim. Acta Revs., 2 (1968) 7.
- 4 M. Green, S. Tolson, J. Weaver, D.C. Wood and P. Woodward, Chem. Commun., (1971) 222.
- 5 J.E. Thomasson, P.W. Robinson, D.A. Ross and A. Wojcicki, Inorg. Chem., 10 (1971) in press.
- 6 P.W. Robinson and A. Woicicki, Chem. Commun., (1970) 951.

J. Organometal. Chem., 31 (1971) C34-C36